Final Exam, MTH 205, Summer 2010

Ayman Badawi
QUESTION 1. Find the solution to $\frac{d y}{d x}=\frac{1}{x+4 y^{3} e^{y}}$, and $y(10)=0$, (i.e. when $\mathrm{x}=10$, then $\mathrm{y}=0$.)

QUESTION 2. Solve the D.E : $\frac{d y}{d x}=(x+y)^{2} \sin ^{2}\left(\frac{x+y-1}{x+y}\right)-1$

QUESTION 3. Given $y^{\prime}=-y^{4}+9 y^{2}$. Find the critical points of the D.E, and label each as STABLE, SEMI-STABLE, NON-STABLE. If the graph of a solution to the D.E is passing through the point $(4,0)$, then sketch a rough graph of this solution. If the graph of a solution to the D.E. is passing through the point $(4,-2)$, then sketch a rough graph of this solution.

QUESTION 4. Given $y=x e^{x}$ is a solution to the D.E : $a y^{(2)}+b y^{\prime}+y=e^{x}$, where a, b are some constants. Find the general solution to the D.E: $a y^{(2)}+b y \prime+y=0$.

QUESTION 5. Find the general solution to $2 x y^{(2)}-10 y^{\prime}+\frac{18}{x} y=0$. If $y(1)=10$, and $y^{\prime}(1)=31$, what is THE SOLUTION of the D.E.

QUESTION 6. solve the D.E: $\frac{d y}{d x}=\frac{-2 x y-\sin (2 x+2 y)+3}{x^{2}+\sin (2 x+2 y)+\ln (y)}$

QUESTION 7. solve for $f(x)$ such that $e^{x} f(x)=x^{3}+e^{2 x}-\int_{0}^{x} e^{x} f(r) d r$

QUESTION 8. Solve for $y(x)$ such that $\int_{0}^{x} x e^{(x-2)} y^{\prime}(t) d t=x^{2} U(x-1)$, and $y(2)=12$ [Hint: Trivial if you think!!]

QUESTION 9. Find the general solution to $\sin (x) y^{(2)}-\cos (x) y^{\prime}=1$

QUESTION 10. Solve for $x(t)$ and $y(t): x^{\prime}(t)-y(t)=0, x(t)+\int_{0}^{t} y(r) d r=2 t, x(1)=1$.

QUESTION 11. A thermometer is taken from inside room to the outside, where the air has a constant temperature of 5 F . After one minute the thermometer reads 55 F , and after 5 minutes it reads 30 F . What is the initial temperature of the inside room? How long does it take before the thermometer reads 20F?

QUESTION 12. Let $A(t)$ be the population of a small town at time t where t is time in years. Given that the population of the town now is 1000 , and the rate of growth is proportional to $\left(\frac{1}{A(t)}+A(t)\right)$. If the population of the town after 1 year is 1200 , what will be the population of the town after 3 years?

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

